Integral#
Let \(P\) be a partition of a segment \([a, b]\):
and \(\xi_k \in [x_{k-1}, x_k]\), \(k=1, \ldots, n\).
Denote \(d(P) = \max\limits_{1 \leqslant k \leqslant n} (x_k - x_{k-1})\). Riemann integral of a function \(f \in C[a, b]\) is a limit of Riemann sums
Each summand in the Riemann sum represents the area of a thin rectangle with height \(f(\xi_k)\). Therefore, the integral \(\int\limits_a^b f(x)\,dx\) equals area under the graph \(y = f(x)\).
Rules of integration#
Integraion by parts: if \(f, g \in C^1[a,b]\) then
Change of variable: if \(\varphi \in C^1[a, b]\) is a monotonic function, \(\varphi([\alpha, \beta]) = [a, b]\), then
Fundamental theorem of calculus
If \(f' \in C[a, b]\) then
In other words,
where \(G\) is antiderivative of \(g\).
Improper integrals#
If \(f \in C[a, b]\) for all \(b > a\) then improper integral over \([a, +\infty)\) is defined as
if this limit does exist. In such case improper integral is called convergent, otherwise — divergent.
Fundamental theorem of calculus also works for convergent integrals. For example,
(here we use property \(e^{-\infty} \equiv \lim\limits_{t\to +\infty} e^{-t} = 0\).)
Gamma function#
The gamma function \(\Gamma(\alpha)\), \(\alpha > 0\), is defined as
Properties of gamma function:
\(\Gamma(n) = (n-1)!\) if \(n\in\mathbb N\)
\(\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)\) if \(\alpha > 0\)
\(\Gamma(\alpha) \Gamma(1 - \alpha) = \frac \pi{\sin\pi\alpha}\) if \(0 < \alpha < 1\) (complement formula)
Gamma function is positive and stricty convex
Gamma function is infinitely differentiable and
\[ \Gamma^{(n)}(\alpha) = \int\limits_0^{+\infty} x^{\alpha -1} e^{-x}\ln^n x\,dx \]
The log derivative of gamma function is called digamma function:
Digamma function also can be represented as
where \(\gamma\) is Euler—Mascheroni constant.
Beta function#
The beta function is defined as
Beta function is symmetric: \(B(p, q) = B(q, p)\). Also, it can be expressed in terms of gamma function:
Exercises#
Calculate \(\int\limits_0^1 \ln x\,dx\).
Prove that \(\Gamma(n) = (n-1)!\) if \(n\in\mathbb N\).
Using the complement formula, find \(\Gamma(1/2)\).
Show that \(\Gamma(n + \frac 12) = \frac{(2n-1)!!}{2^n}\sqrt \pi\) if \(n\in \mathbb N\).
Calculate the Poisson integral \(\int\limits_0^{+\infty} e^{-x^2}\, dx\).
Find \(\Gamma'(1)\) using expansion of digamma function.
Calculate \(\int\limits_0^{\frac \pi 2} \sin^n x\,dx\).