Estimations#
Bias#
Let
For example, sample average
Sometimes estimation
Consistency#
Estimation
Due to the law of large numbers
Bias-variance decomposition#
Mean squared error (MSE) of
Bias-variance decomposition:
Proof
If
In machine learning bias-variance decomposition is also called bias-variance tradeoff:

Asymptotic normality#
Estimation
If
Maximum likelihood estimation (MLE)#
Let i.i.d. sample
Если выборка i.i.d., то функция правдоподобия распадается в произведение одномерных функций:
Оценка максимального правдоподобия (maximum likelihood estimation, MLE) максимизирует правдоподобие:
Поскольку максимизировать сумму проще, чем произведение, обычно переходят к логарифму правдоподобия (log-likelihood). Это особенно удобно в случае i.i.d. выборки, тогда
Properties of MLE
consistency:
;equivariance: if
— MLE for then — MLE for ;asymptotic normality:
;асимптотическая оптимальность: при достаточно больших
оценка имеет минимальную дисперсию.
Exercises#
Let
be an i.i.d. sample from and . Is this estimation unbiased? Asymptotically unbiased? Consistent?Show that estimation
is consistent if it is asymptotically unbiased and .Let
be an i.i.d. sample from . Show that sample median is unbiased estimation of . See also ML Handbook.Let
be an i.i.d. sample from a distribution with finite moments and . Is sample variance unbiased estimation of ? Asymptotically unbiased?There are
heads and tails in independent Bernoulli trials. Find MLE of the probability of heads.Find MLE estimation of
if is an i.i.d. sample from .Let
be i.i.d. sample from . Find MLE of and .Find MLE estimation of
and if .