Matrix norms#
Frobenius norm#
Let \(\boldsymbol A \in \mathbb R^{m\times n}\). Frobenius norm of \(\boldsymbol A\) is defined as
Spectral norm#
The spectral norm of the matrix \(\boldsymbol A \in \mathbb R^{m\times n}\) is equal to maximal eigenvalue of \(\boldsymbol A^\mathsf{T} \boldsymbol A\):
Condition number#
For a square matrix \(\boldsymbol A\) define its conditional number as
If \(\boldsymbol A\) is singular then \(\kappa(\boldsymbol A) = \infty\).
Properties of conditional numbers
\(\kappa(\boldsymbol A) \geqslant 1\);
\(\kappa(\boldsymbol A) = \kappa(\boldsymbol A^{-1})\);
\(\kappa(\boldsymbol{AB}) \leqslant \kappa(\boldsymbol A)\kappa(\boldsymbol B)\).
Exercises#
Find \(\Vert \boldsymbol I_n \Vert_F\), \(\Vert \boldsymbol I_n \Vert_2\), \(\kappa(\boldsymbol I_n)\).
Find \(\Vert \boldsymbol Q \Vert_F\), \(\Vert \boldsymbol Q \Vert_2\), \(\kappa(\boldsymbol Q)\) if \(\boldsymbol Q\) is an orthogonal matrix.
Let \(\boldsymbol A = \boldsymbol A^\mathsf{T}\). Show that \(\Vert \boldsymbol A \Vert_2 = \max\limits_{\lambda \in \mathrm{spec}(\boldsymbol A)}\vert\lambda\vert\).
Let \(\boldsymbol A\) be a symmetric positive definite matrix. Show that \(\kappa(\boldsymbol A) = \Big\vert\frac{\lambda_{\max}(\boldsymbol A)}{\lambda_{\min}(\boldsymbol A)}\Big\vert\).